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Abstract. A concept lattice may have a size exponential in the number
of objects it models. Polynomial-size lattices and/or compact represen-
tations are thus desirable. This is the case for planar concept lattices,
which has both polynomial size and representation without edge cross-
ing, but a generic process for drawing them efficiently is yet to be found.
Recently, it has been shown that when the relation has the consecutive-
ones property (i.e, the matrix of the relation can be rapidly reorderd
so that the 1s are consecutive in every row), the number of concepts
is polynomial and these can be efficiently generated. In this paper we
show that a consecutive-ones relation |R| has a planar lattice which can
be drawn in O(|R|) time. We also give a hierarchical classification of
polynomial-size lattices based on structural properties of the relation R,
its associated graphs Gbip and GR, and its concept lattice L(R).3

Keywords: consecutive-ones matrix, consecutive-ones relation, planar
lattice, polynomial lattice, chordal-bipartite graph, Ferrers dimension.

1 Introduction

There is a strong relationship between concept lattices and graphs, which enables
to use the rich mine of graph results. For example, [4] presented a very efficient
algorithm to generate the concepts when the relation has the consecutive-ones
property. They used the natural association between a finite context (O,P,R)
and a bipartite graph Gbip = (O + P, E), where xy ∈ E iff (x, y) ∈ R. Another
interesting feature is that these consecutive-ones relation have a few O(|R|)
concepts, and can be recognized and reorganized in very efficient O(|R|) time
([8]). This relationship was also illustrated by [5] who defined an encoding graph
GR which is the complement of Gbip (i.e., GR = (O + P, F ), O and P are
cliques and ∀x ∈ O, ∀y ∈ P, xy ∈ F iff (x, y) 6∈ R). GR was then used by [3] for
generating all the concepts in the general case.

In [6], the problem of restricting a relation to a relation which has a poly-
nomial number of concepts was addressed by suggesting to embed the relation
3 This research has been developped on june 2007, while E. Eschen was invited at
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into a relation whose graph GR is weakly chordal. In this case, the lattices L(R)
have O(|R|) concepts.

To avoid handling exponential lattices, a O(|O+P|) size substructure called
Galois sub-hierarchy has been defined. There are several algorithms that com-
pute the Galois sub-hierarchy in at least O(|O + P|.|P|2) (see [1]).

Recently, [20] discussed about a characterization of the planar lattices as
having a Ferrers dimension at most to two (see Theorem 1 below). Also concerned
whith the number of concepts, he pointed out that these lattices have at most
O(|P3|) concepts. However, actually obtaining a planar drawing remains difficult.

Graph results enables us to remark that relations with Ferrers dimension at
most two are a supercase of consecutice-ones relations, and a subcase of relations
for which graphs Gbip are weakly chordal. This gives the idea that there is an
interesting hierarchy of classes of concept lattices which need to be researched.

In this paper, we address two closely related problems:
• We discuss how to obtain an efficient planar drawing of the lattice for the
sub-class of planar lattices whose relations have the consecutive-ones property.
• We study a hierarchical classification of polyomial size concept lattices, and
give precise bibliographical references. This hierarchy combines results based on
graph theory, order and lattice theory, and matrix patterning that should be
helpful for further work on lattice representations.

2 Background

An undirected graph G = (V,E) is said to be chordal (or triangulated) if it has no
chordless cycle of length greater then 3. A graph G is said to be weakly chordal
if it and its complement, G, has no chordless cycle of length greater then 4. A
bipartite graph is a graph G = (V1+V2, E), where V1 and V2 are independent sets
(i.e., each induces an edgeless subgraph). A chordal-bipartite graph is a graph
that is bipartite and weakly chordal. The neighborhood of a vertex v in a graph
G = (V,E) is denoted and defined as N(v) = {x ∈ V |vx ∈ E}. A bipartite graph
is a chain graph if for each Vi i ∈ {1, 2}, the neighborhoods of vertices of Vi can
be totally ordered by set containment (i.e., for any pair of vertices u, v ∈ Vi,
either N(u) ⊆ N(v) or N(v) ⊆ N(u); equivalently, the graph has no induced
2K2).4

A relation R ⊆ (O × P) is said to be a Ferrers relation if ∀x1, x2 ∈ O,
∀y1, y2 ∈ P, (x1, y1) ∈ R and (x2, y2) ∈ R implies (x1, y2) ∈ R or (x2, y1) ∈
R. The Ferrers dimension of a relation R is the minimum number of Ferrers
relations the intersection of which is R. The chain dimension of a bipartite
graph is the minimum number of chain graphs the intersection of which yields
the graph. Therefore, the Ferrers dimension of a relation R is equal to the chain
dimension of Gbip. A chain graph is a graph with chain dimension 1; thus R is
a Ferrers relation iff Gbip is a chain graph.

4 A 2K2 of an undirected graph G is a quadruple of vertices x,y,z,t such that xy and
zt are the only edges of G whose enpoints both are in {x,y,z,t}.



Planar lattices ar characterized by their Ferrers dimension:
Theorem 1. ([2],[7],[11]) The following are equivalent:
– The Ferrers dimension of R is at most 2;
– L(R) has a planar representation;
– The order dimension of L(R) is at most 2;
– L(R) has a conjugate order.

When GR is chordal ([5]), the corresponding matrix of a R presents a very
specific pattern, called a staircase, as the rows are totally ordered by inclusion
(see an example in Figure 1). We then have:
Theorem 2. The following are equivalent:
– R is a Ferrer relation;
– R has a staircase matrix;
– Gbip is a chain graph;
– GR is chordal;
– L(R) is a chain.

a b c d e f

1 × × × × ×
2 × × ×
3 × ×
4 × ×
5 ×

Fig. 1. A staircase matrix of a relation, and its concept lattice which is a chain.

3 Consecutive-ones lattices

Consecutive-ones lattices are planar. A relation is said to have the consecu-
tive-ones property (for rows) if the columns of its binary matrix can be ordered
such that in each row all the ones are consecutive. Figure 2 shows such a relation
and the corresponding concept lattice. Planarity of consecutive-ones lattices is
a direct consequence of Theorem 1 applied to the following observation.

Observation 3 If a relation has the consecutive-ones property, then its Ferrers
dimension is at most 2.

Proof: Let M be a consecutive-ones matrix of a relation R. Let F1 be the
relation obtained from M by: for each row, changing to one each zero that occurs
before the sequence of ones in the row. Let F2 be the relation obtained from M
by: for each row, changing to one each zero that occurs after the sequence of
ones in the row. By Theorem 2, F1 and F2 are Ferrers relations, and clearly
R = F1 ∩ F2. Thus, the Ferrers dimension of R is at most 2. ♦

Note that Observation 3 is also implied by a characterization of a larger class
of relations (see [15]), those of Ferrers dimension 2 for which F1∪F2 is complete
(which corresponds to the interval digraphs).



a b c d e f

1 × × × × ×
2 × × ×
3 × ×
4 ×
5 × × ×
6 ×
7 × × ×
8 × ×
9 ×

Fig. 2. A consecutive-ones relation and the associated concept lattice. In the matrix,
objects and properties are ordered such that in each row all the 1s are consecutive.
The margin of the Lattice drawing gives the coordinates of the concepts, as computed
by a execution of algorithm PlaCoL (see below).

Not all planar lattices have the consecutive-ones property, as illustrated in Fig-
ure 3. In the matrix of this example the columns can not be reordered to obtain
a consecutive-ones matrix: columns a and b must be consecutive (because of ob-
ject 1) and so do columns b, c, and d (because of object 3); thus no permutation
of the columns can erase the hole on row 5.

a b c d e

1 × ×
2 ×
3 × × ×
4 ×
5 × ×

Fig. 3. A relation that does not have the consecutive-ones property, and the corre-
sponding planar lattice.

Unfortunately, the Ferrers dimension does not give much insight towards an
efficient generic process for generating a planar drawing. We now present an
algorithm, which we call PlaCoL (for PLAnar drawing of Consecutive-Ones
Lattices), that use the specificity of a consecutive-ones matrix to efficiently build
a planar representation of the lattice. With a slight modification, this algorithm
computes the Galois sub-hierarchy.

The algorithm. We use as input a consecutive-ones matrix in which the rows
are ordered by increasing value of starting column SC. The rows sharing the
same SC are ordered by decreasing value of ending column EC; thus, defining



one of the staircases s of the matrix. Note that several rows may have the same
EC value and the same SC value. The algorithm contructs for each staircase, a
chain of the lattice each concept of which is associated with a row of the matrix
(see [4] for more explanation on this process). Tables HEAD and TOP memorize
the concepts from which an edge has to be drawn respectively to a concept of a
later chain (lateral edge) or to the top. The edges from the bottom to the atoms
are drawn online. For example, for the matrix M of Figure 2, PlaCoL first
generates the bottom ∅ × P as M [1, f ] = 0. Staircase 1 (rows 1-4) successively
generates the elements of the first chain 1× abcde∼ 1234× a. Staircase 2 (rows
5-6) generates chain 15×bcd∼ 12356×b and the lateral edges outgoing from the
first chain. Staircase 3 (rows 7-9) generates chain 7 × def ∼ top and the lateral
edges outgoing from staircase 2. PlaCOL ends by drawing the edges incoming
to the top. The position of each concept is determined by its chain number
(abscissa) and its intent size (ordinate) as described below.

Algorithm PlaCoL
Input: A consecutive-ones matrix in the form described above.
Output: A planar drawing of the corresponding concept lattice.
Process:
If the first row of the matrix ended with a zero then

Generate bottom = ∅ × P;
ABSCISSA(bottom)← 1; ORDINATE(bottom)← 0;
Create an egde from bottom to the first concept generated next;

// else the first concept generated next will be the bottom.
For each staircase s do:

Let t be the first row of s;
For each list R of rows of s sharing the same EC do:

Let r be the last row of R;
If ∃i ∈ [t .. r] | SC(i)=SC(s) then

Let u be the first such row i;
If SC(r)<SC(s) then A←∅ else A←[u .. r];
B ←[SC(s)..EC(r)];
Create concept A×B;
TOP(s)← A×B;
ASBCISSA(A×B)←s;
ORDINATE(A×B)←|P| − |A|; // i.e., 0 or (r − u)
If A×B is not the first concept generated for staircase s then

// Edge between consecutive concepts of same chain.
Create an edge from the previously generated concept to A×B;

If ∃i ∈ R | SC(i)<SC(r) then // Create a lateral edge.
Let q be the last such row in R, h the corresponding staircase;
Create edge from HEAD(q) to A×B;
TOP(h)←A×B;

else if A×B first concept of s and extent(bottom) empty then
Create an edge from bottom to atom A×B;



If s is not the last staircase and EC(r)≥SC(s + 1) then
Insert rows R in staircase s + 1;
// preserving increasing order on EC, and on SC.
HEAD(r)←A×B;

If r is the last row of the last staircase then
If the intent of the last generated concept is P

then this concept is the top element;
else generate the top concept O × ∅;

For each staircase s do:
Create an edge from TOP(s) to the top element.

We first prove that Algorithm PlaCoL actually generates the concepts in an
order compatible with a planar drawing.

Lemma 4 Algorithm PlaCoL constructs successive chains (first one with bot-
tom, last one with top, each chain labeled by its generating staircase), which
yields a partition of the lattice in which a concept is generated only after all its
ancestors have been generated.

Proof: The first staircase, s = 1, generates all the concepts that contain the
first property SC(1) (corresponding to the first column). By Theorem 2, these
concepts form a chain of concepts ordered by increasing size of extent [t .. r].
By construction of the matrix, all the concepts generated afterwards will not
have SC(1) in their intents, and thus, will not be ancestors of any concept of
the first chain; thus the first generated chain is actually a chain of the lattice
containing exactly those concepts with SC(1) in their intent. Recursively, each
staircase s generates the concepts the intents of which contain SC(s) and not
SC(1) through SC(s − 1); this corresponds to a chain in which each concept
will not be an ancestor of a previously generated concept. As each concept is
generated once (see [4]), this yields a partition of the lattice into chains; i.e., a
linear extension which respects the claimed property on concepts. ♦

We now know that the only edges that can be created in Algorithm PlaCoL
will be edges going up from a given concept to another concept higher either in
the same chain or laterally to a concept generated by a later staircase. There
remains to prove that these lateral edges are non-crossing edges.

Theorem 5. Assume an execution of Algorithm PlaCoL on a consecutive-ones
matrix, resulting in a corresponding concept lattice diagram. If the diagram has
an edge from a concept Cs of generated chain s to a concept Cu of generated
chain u 6= s, then u > s and this induces no crossing edge that is impossible to
avoid.

Proof: Let Cs and Cu be concepts respectively generated by two different stair-
cases s and u. Suppose the diagram contains an edge e from Cs to Cu.
– By Lemma 4, s > u is impossible.
– If u = s + 1, there is no obstacle.



– If u > s + 1 there will be at least one intermediate chain t. Let S be the first
concept generated by chain s and S′ its last concept. We similarly define T , T ′,
U , and U ′, for chains t and u. Four exclusive situations could occur, which are
illustrated by Figure 4:
Case 1. e is a transitivity edge and therefore is not in the diagram of L(R).
Otherwise, e is not a transitivity edge: next cases.
Case 2. T is a descendent of Cs – i.e., there is an edge S′′–T with S′′ descen-
dent of Cs in chain s. Thus edge e can be drawn below edge S′′-T and there
is no crossing. Otherwise, e is forced to cross some non-transitivity edge of an
intermediate chain t: next cases.
Case 3. Cu is not a descendent of any concept of t. Note there may be some edge
from a concept T ′′ of t to a concept U ′′ of u which is a descendent of Cu, but it
does not matter. Since Cu is not a descendent of T , the rows of T (i.e., the last
objects in its extent) have not been used to construct Cu, i.e., EC(T )<EC(Cu).
As we are not in case 2, T is not a descendent of Cs (nor an ancestor) and
then EC(T )>EC(Cs). As a consequence EC(Cs)<EC(Cu) which contradicts the
existence of the edge e.
Case 4. Otherwise, Cu is a descendent of some concept Ct of t. Let I =
intent(Cs) ∩ intent(Ct). Since Cu is a descendent of both Cs and Ct, we have
intent(Cu) ⊂ I 6= ∅. If I=intent(Ct), then intent(Ct)⊂intent(Cs) and Ct is a
descendent of Cs. Then e is a transitivity edge. If I ⊂ intent(Ct), there must
exist a concept X such that intent(X) = I, X is a descendent of Cs and Ct, and
X is on chain t. Since, intent(Cu) ⊂ I = intent(X), Cu is a descendent of X.
Then e is a transitivity edge. This last case is thus impossible. ♦

Fig. 4. Different situations for the proof of Theorem 5.

We now prove that all the edges of the diagram are actually provided by
Algorithm PlaCoL. For this we need the following lemma:

Lemma 6 In the diagram of a consecutive-ones lattice, each concept different
from top has at most one incoming edge from concepts of a previous chain gen-
erated by Algorithm PlaCoL.

Proof: Suppose the diagram has both edge Cs–Cu and edge Ct–Cu. If Cs,
Ct, and Cu be concepts generated by three different staircases s ≤ t ≤ u. This
corresponds exactly to the case number 4 of Theorem 5, and thus, is impossible.



If Cs and Ct are generated by the same staircase, and thus, are in the same chain.
W.l.o.g. Cs is an ancestor of Ct. As a consequence, edge Cs–Cu is a transitivity
edge. ♦

Theorem 7. Algorithm PlaCoL provides all the edges of the diagram.

Proof: Recall, by Lemma 4, PlaCoL partitions the concepts of the lattice
in to a collection of chains. Suppose the diagram contains an edge e=C1–C2.
Either C1 and C2 are in the same chain of this partition or not. Concepts C1

and C2 are generated by the same staircase iff they are in a same chain; then
e is created by the algorithm iff C1 and C2 are consecutive. If C1 and C2 have
been generated by two different staircases i and j respectively, then i < j, and
this means that rows of staircase i have been inserted in the following staircases
until (at least) staircase j. Algorithm PlaCoL detects whether there exists such
an insertion and, if yes, selects the most recent such staircase q (i.e., of highest
index) and the corresponding concept, which is given by HEAD. By Lemma 6,
such a situation occurs at most once for each concept and the algorithm creates
a lateral edge. Finally, each highest concept of a chain will be linked to the top,
unless this highest concept is an ancestor of a concept of another chain. TOP
ensures there will be no created edge between top and a concept that has been
proven to be a ancestor of some concept of a later chain. Thus, each edge of the
diagram is generated exactly once. ♦

Complexity analysis. As a consecutive-ones lattice has at most O(|R|) con-
cepts ([4]) and, by Lemma 6, the diagram of a consecutive-ones concept lattice
has at most O(|R|) edges, each of them is generated without extra cost. Thus,
Algorithm PlaCoL has the same O(|R|) complexity as Algorithm CONS-1.

Drawing the diagram. The above considerations do not ensure a correct pla-
nar drawing of the lattice, as some pair of edges that could be drawn without
crossing may cross in an incautious drawing. Fortunately, this problem can be
solved by choosing for each concept C an ordinate value y(C) that is a function
of the size of its intent: y(C) = |P| − |intent(C)|. As intent(C) is an interval,
its size is computed in constant time. Note that the ordinates can be computed
using the extent instead of the intent, especially when Algorithm PlaCoL is
modified to give the whole extent label (see below).

Furthermore, each edge is drawn when its ending point is reached and, at
this time, its starting point is memorized in HEAD; there is thus no need to
memorize all the previously generated concepts – an expensive constraint for
many lattice generating algorithms.

The abscissa of a concept is given by the number of the chain to which this
concept belongs. With this, the bottom’s abscissa is 1 and the top’s abscissa is
the number of staircases in the input matrix. We may chose several values both
for the initial abscissa and for the increment.

If we want to set bottom and top on the same vertical line, all the coordinates
can be rotated accordingly, using a simple mathematical formula: if (x0, y0) are



the coordinates of bottom and (x1, y1) the coordinates of top, we will rotate
all the coordinates by angle θ = ArcSin((x1 − x0)/

√
(x1 − x0)2 + (y1 − y0)2 ).

Consequently, the previously verticality will have a new π
2 +θ direction; the other

edges, which had a direction in interval ]0,+π
2 [, will have a direction in ]θ, θ+ π

2 [,
which remains correct because 0 < θ ≤ +π

2 . Other changes to coordinates may
be chosen, as desirable for different purposes; in particular, for the respect of
attribute-additivity (see [14]).

Concept labeling. In order to obtain a time complexity of O(|R|), Algorithm
CONS-1 only labels the intent of each concept. A complete labeling of the extent
would have an elementary cost corresponding to the size of each generated extent.
This is due to the fact that a consecutive-ones matrix ensures each intent is an
interval, but this is not true for the extents, as a concept created by a set R of
rows of a staircase u can use rows of a previous staircase s without using any
row of some intermediate staircase t (in other words, some row of s has an EC
greater or equal to the EC of the rows in R, but no row of t does).

It is possible to memorize and update a list of the rows whose ECs are
not outdated, and this can be done in O(|O|) per concept. Consequently, the
total complexity of Algorithm CONS-1, as well of Algorithm PlaCoL, would
be O(|O|.|R|), if we want a complete labeling of the extents.

On the other hand, for lattice drawing, the concepts need to be labeled only
by the introduced objects and/or properties. Then, in Algorithm PlaCoL we
chose to label the intent with the introduced objects. Computation of a concept
C is determined by the set R of rows defined within a given augmented staircase
s by a common value of EC. This will determine the introduced objects of
intent(C). Intent(C) is partitioned into three sets. The first set corresponds to
the rows that have been inserted in s and inherited from a previous staircase; they
are characterized by a SC value different than SC(s). The second set corresponds
to the rows that have been used to create a previous concept of the same chain;
they are characterized by a EC bigger then the smallest EC of R. The last
set corresponds to the rows that have not been previously used. The objects
introduced by C are exactly the ones of the third set, which are computed with
no extra-cost by Algorithm PlaCoL.

We can provide the corresponding introducer-labeling for the properties,
making a few slight changes in Algorithm PlaCoL; this will have no impact
on the complexity. As all the rows of the same staircase share the same SC and
are ordered by decreasing value of EC, only the last concept of a chain may intro-
duce a property. As the concepts of a chain have no descendent in a previously
generated chain, a concept cannot introduce a property that is in the intent of
some concept of a chain that is generated later. Thus, the last concept of each
chain s is the introducer of properties in interval [SC(s) ..SC(s + 1)[, except for
the last chain l (in which the last concept introduces [SC(l) ..EC(l)]). If z is the
first column of the matrix with no 1, the properties of [z .. |P|] are introduced by
bottom. Each property p of the remaining interval ]EC(l) .. z[ is introduced by
the last concept of the last chain whose row’s EC is bigger than p; this can be



determined in a lazy way by preprocessing the column that labels each staircase
with the appropriate list of properties from ]EC(l) .. z[.

Galois sub-hierarchy. As a consequence, Algorithm PlaCoL can also be mod-
ified to compute the Galois sub-hierarchy: using the introducer-labeling, all the
concepts whose intent and extent are both empty will be dismissed. The remain-
ing concepts are the elements of the sub-hierarchy. When a concept is dismissed,
it is replaced by its highest maintained ancestor in the same chain for the out-
going edges and by its lowest maintained descendent in the same chain for the
incoming edges; bottom and top are managed accordingly. Thus, using elemen-
tary techniques, the total complexity remains the same: the Galois sub-hierarchy
is computed in O(|R|) time, which is better than the generic algorithms ([1]),
and should be refinable to O(|O + P|).

Figure 5 give a planar drawing of the lattice of Figure 2 with the standard
labeling of the concepts.

Fig. 5. A standard planar drawing of the lattice of Figure 2.

4 A hierarchy of polynomial concept lattices

In this section, we present a hierarchical classification of polynomial-size concept
lattices using a known hierarchy of bipartite graph classes: {chain} ⊂ {biconvex}
⊂ {convex} ⊂ {ATE-free} ⊂ {chordal-bipartite} ⊂ {bipartite} (for more infor-
mation on these graph classes, see [19], [9], and [10]5). This classification shows
that studying the length of cycles in graphs ([12]) is important for concept lat-
tices.
1. The smallest class corresponds to the lattices that are simply a chain, as in
Figure 1. This corresponds to the situation of Theorem 1.
2. The second class corresponds to matrices that have the consecutive-ones prop-
erty for the objects as well as for the properties.
5 Note the use of ‘bichordal’ for chordal-bipartite, ‘bigraph’ for bipartite graph, ‘di-

graph’ for directed graph.



Matrix M RelationR Bipartite graph Gbip Co-bip. graph GR LatticeL(R)

1 staircase Ferrers dim.= 1 chain graph chordal chain, size O(|O|)
2 doubly consecutive-ones biconvex
3 consecutive-ones convex size O(|R|)
4 see [10] Ferrers dim.≤ 2 chain dim. ≤ 2 circular-arc planar

5 ATE-free
6 Γ -free chordal-bipartite weakly chordal
7 polynomial size

Fig. 6. The hierarchy of polynomial-size concept lattices. The smaller class is above.

3. A wider class corresponds to the consecutive-ones property; as shown above,
the corresponding lattices are planar. Gbip is convex.
4. The next class is the class of planar lattices. They are characterized by The-
orem 1, which is difficult to handle (see e.g., [20]). [10, 17, 18] indirectly give
another characterization of planar lattices by setting an equivalence between a
Ferrers dimension ≤ 2 relation and a pattern in the matrix. They also prove
that the graphs Gbip in this case are exactly the interval containment bipartite
graphs. In [17, 16], the graphs GR are characterized as circular-arc co-bipartite
graphs.
5. The previous class of bipartite graphs is properly contained in a subclass
of chordal-bipartite graphs, the class of ATE-free chordal-bipartite graphs (see
[10]).
6. In [6], it is proved that a concept lattice for which Gbip is chordal-bipartite
(equivalently, weakly chordal and bipartite) has O(|R|) concepts. All the previ-
ous classes we present are included in this one, and thus, have polynomial-size
concept lattices. Testing whether a graph is chordal-bipartite can be done in
min{O(|O+P|2), O(|R|.log(|O+P|))} time (see e.g., [19] for a discussion), and
this can be performed directly on the matrix M . These graph algorithms com-
pute a doubly lexical ordering of the matrix and search for a specific forbidden
pattern called a Γ 6. Every doubly lexical ordering has no Γ iff the corresponding
graph is chordal-bipartite. We know how important is the use of total orders on
objects or properties for concept generation: arbitrary order such as lectic (i.e.
lexical) order of [13] or structural order as domination of [3].
7. Our largest class is the one of polynomial-size concept lattices.

5 Conclusion

We have demonstrated that the special structure of consecutive-ones relation
matrices can be exploited to efficiently draw a planar concept lattice diagram.
The hierarchy of polynomial-size lattices illuminates the relationship between
several special classes of relations (alternatively, graphs) and concept lattices,
including those lattices that are planar. Further study of these relationships
is likely to yield new results in the efficient representation of concept lattices;
in particular, for those lattices that have ”almost planar” representations. In
6 For h<i, j<k, M[h,j]=M[h,k]=M[i,j]=1 and M[i,k]=0 forms a Γ of matrix M.



addition, one might study how to complete (or restrict) an arbitrary relation
into a special class in order to exploit special structure by adding (or removing)
a small (bounded) or inclusion-minimal set of ones. A chordal-bipartite graph has
no chordless cycle of size ≥ 6; it would be interesting to study classes of bipartite
graphs Gk that permit chordless cycles of increasing size (i.e., a graph in the class
Gk has no chordless cycle of size ≥ k) to see if the corresponding concept lattices
remain polynomial sized and whether the concepts can be efficiently generated.
Ultimately, one would like to characterize the class of polynomial-size concept
lattices.
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