Generalized Domination in Closure Systems

Anne Berry*, Eric SanJuanf, Alain Sigayret*

1st February 2003

Abstract

In the context of extracting concepts (which
are maximal item sets) and association rules
from a binary data base, the graph-theoretic
notion of domination was recently used to
characterize the neighborhood of a concept
in the corresponding lattice.

In this paper, we show that the notion of
domination can in fact be extended to any
closure operator on a finite universe. This
generalization enables us to endow notions
related to Formal Concept Analysis with
a logical interpretation into a set of Horn
clauses.

Our results also enable us to present a
prospective algorithmic process which uses
only local information inherited by a con-
cept from its direct predecessors to generate
rules, instead of repeatedly using all previ-
ously defined rules. This algorithm, which is
very promising in practical applications, as it
can be implemented to run quickly, can also
be applied in the general case.

1 Introduction

In the context of mining for information in binary
data bases, recent works by Ganter and Wille use
Formal Concept Analysis to investigate concepts,
which are the maximal rectangles of the binary re-
lation and correspond to a maximal factorization of
item sets; this is used in a combinatorial approach
for extracting patterns from a data base.

Equally important, the related problem of rule gen-
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eration, which corresponds to finding functional de-
pendencies in data bases, is of major importance in
data analysis, for wide-spread applications such as
behavioural prediction, artificial intelligence, mod-
elization of genomic phenomena, and so forth. Re-
cent work has been done by Guigues and Duquenne
to define a minimum set of exact association rules.

Mathematical investigation has shown that con-
cepts as well as rules are associated with several
mutually inclusive closure lattices.

These lattices are potentially of exponential size,
and as there may be even more rules than there
are concepts, efficient algorithmic techniques are ac-
tively being sought to deal with these problems.

An interesting breakthrough was initiated by Bor-
dat when remarking that in order to generate the
neighbors of a given concept in the lattice, no in-
formation on other concepts is required. However,
state of the art rule generation algorithms require,
in order to generate one rule, information on all
previously generated rules, a set which it is not al-
ways feasible to handle.

Our general purpose in this mathematical-oriented
paper is to study various relationships between dif-
ferent formal approaches, in view of using mathe-
matical and/or algorithmic results which stem from
different fields of discrete mathematics.

Several approaches have been proposed very re-
cently in this direction.

SanJuan in [San 99] and [San 02] used Heyting al-
gebra to modelize Rough Sets, which among other
things explored the relationships between Formal
Concept Analysis and functional dependencies, as
well as involving prime implicants.

Berry and Sigayret in [BS 02] proposed a represen-
tation of a concept lattice by a graph, where the
graph-related notions of domination and maxmods
were used, as well as that of minimal separation.
Bordat’s results were explained and extended, the
cover of a concept characterized using only local in-



formation. This work established a relationship be-
tween graph theory and concept lattices, and was
rewarded by immediate algorithmic results in terms
of concept generation with very good worst-time
analysis.

In this paper, we show that we can extend the no-
tion of domination to any closure operator defined
on a finite universe U. This develops into a series of
interesting consequences: we use this very general
notion to establish novel relationships between For-
mal Concept Analysis, the theory of closure spaces,
Horn functions, and boolean analysis.

We finish the paper by using domination to pro-
pose a new prospective algorithmic approach, which
computes a generator of association rules, using lo-
cal information inherited from the predecessors of a
given concept rather than the entire set of already
defined rules.

2 Generalizing domination to
general closure systems

2.1 Closure operators induced by bi-
nary relations

Our starting point is the Galois lattice or Concept
lattice ([Wil 82] defined by a binary relation:

Given a finite set P of 'properties’, a finite set O of
objects, and a relation RCP x O, we will define,
for any subset X of p(P) or p(0):

e NX)={yeO:Vze X, (z,y) € R} if XCP,
e NX)={yeP:Vxe X, (y,2) e R}iIf XCO.

We will denote by N?(X) the set N(N(X)). This
defines what is called a closure operator, and the
pairs (N2?(X), N(X)) are called maximal rectangles
or concepts.

The way [BS 02] defined domination between prop-
erties a and b can be reformulated as: a dominates
b if N(a) C N(b); we use this as a pre-order to de-
fine the equivalence classes as maxmods: X CP is
amaxmod of RifVz,y € X, N(z) = N(y) and X is
maximal for this property. A maxmod X dominates
amaxmod Yif N(X) C N(Y). For X CP,Y C O,
we will denote by R(X,Y") the sub-relation of R de-
fined by:

RX,)Y)={(z,y) eR:z € X,yeY}

Characterization 2.1 A concept B covers a con-
cept A iff B — A is a non-dominating maxmod in
R((P - A),N(A)).

Note that the idea of working on the sub-relation
already appears in [Bor 86].

Example 2.2 We will use the relation from
[GD 86]:
P: {a7b707d76}7 02{1727374}'

Relation R:
a | b|c| d| e
1| x| x
2| x X
3 X | x | x
4 X | X

The associated Concept Lattice is shown in Figure
1.

Concept a corresponds to sub-relation R(P —
{a},N(a)) = R({b,c,d,e},{1,2}), in which N (b) =
{1}, N() = {2}, N(d) = N(e) = b.

Mazmods are {b}, {c} and {d,e}; the non-
dominating maxmods are {b} and {c}, while {d, e}
dominates both {b} and {c}.

The cover of a is {ab,ac}.

Figure 1: Concept Lattice .Z(R) associated with
relation R from Example 2.2.

We will see in the rest of this paper that we can
extend the notion of domination to a general clo-
sure, essentially by stating that b dominates a iff
the closure of a is included in the closure of b.

2.2 General closure systems

We will now extend the notion of domination to any
closure system defined on a finite set U.



We will need some preliminary definitions on clo-
sure systems.

Definition 2.3 A unary operator C on p(U) is
called a closure operator on U if for A, B CU:

1. ACC(A)
2. C(C(A)) =C(A)
3. if AC B, then C(A) C C(B)

A subset A of U is said to be closed if C(A) = A.

Definition 2.4 A family F of subsets of U is a
closure system if for any X CF, we have [\ X €
F.

If F is a closure system, then (F,Q) is a complete
lattice such that U € F and for any X,Y € F,
XNnYeF.

The collection Fc = {C(A) : ACU} of closed sets
is a closure system, with the property that for any
ACU, C(A) is the smallest element F' of F¢ such
that ACF.

Definition 2.5 Given a closure operator C' on U,
a closed set B is said to cover a closed set A if for
any X CU,

ACXCB = C(X)=B

Example 2.6 Let us use the concepts from Eu-

ample 2.2 to define a closure system on U =

{a,b,c,d,e}:

Fo ={0,{a}, {b},{c},{d} {a,b},{a,c} {b,c,d},
{d,e}, U}

In this example, C({e}) = {d,e} and C({a,e}) =

U; ab and ac cover a.

Definition 2.7 Given a closure operator C and a
closed set A, we will define a binary relation on
U — A, which we will denote by dom¢ (A), by setting
for any x,y e U — A:

(z,y) € domg(A) <=y € C(AU{z})
We will say that x dominates y in A.
For any closed set A, domc(A) is a pre-ordering

(i.e. domc(A) is reflexive and transitive). As a
result, U — A can be partitionned into equivalence

classes which we will call maxmods; this results
nto a quotient order, which is a partial order on
the maxmods.

Clearly, a subset M C U — A is a mazxmod iff it
is a mazimal set such that for any v € M, M C
C(AU{z}).

The notion of domination is naturally extended to
maxmods:

Definition 2.8 We denote by Domc(A) the bi-
nary relation defined on the mazmods of domc(A):

(X,Y) € Dom¢(A)
<~ (Ve e X)(Vy € Y)(z,y) € domc(A)

< (Jz € X)(Fy € Y)(z,y) € domc(A)

We will say that mazmod X dominates maxmod
Y.

Using Definition 2.8, we can now reformulate Char-
acterization 2.1 into a general statement:

Characterization 2.9 Given a closure operator C
on a finite set U, and two closed sets A, B, then B
covers A iff B — A is a non-dominating mazrmod of
domc(A) (or, equivalently, a minimal element of
Domg(A)).

2.3 Logical representation of gener-
alized domination

We assume that the reader is familiar with the the-
ory of propositional Horn clauses.

To clarify the relationship between closure systems
and prime implicates of a Horn function, we need
to associate a set of propositional Horn clauses with
the subsets of U.

Definition 2.10 Let C be a closure operator on U;
let A be a subset of U. Then A can be associated

with the following set of propositional Horn clauses
Hc(A):

1. if C(A) =U then Ho(A) = {A—}
2. else Ho(A) ={A—b:be C(A) — A}.

A clause A— is said to be negative, and is some-
times denotated by A— U.



A clause A— b is said to be pure. We shall some-
times write a set of pure Horn clauses {A—b:b €
B,b ¢ A} simply as A— B.

Finally, if X is a subset of p(U) — Fc, then Ho(X)
is defined as the set of clauses:

Ho(X) = | J He(A)
Aex

We apply this definition to associate a Boolean
function with a closure operator C.

Definition 2.11 Let C be a closure operator on U;
we denote by He the set of Horn clauses Ho (p(U)—
Fc) and by fo the Boolean function represented by
He.

Given a binary relation R and using results from
[Fla 76], we can deduce fy2 from R in following
fashion:

Lemma 2.12 Let R be a relation on P x O, then
for any X CP:

(X)) =1 X={N(y):y € O,XCN(y)}

We now characterize the prime implicates of fo as
a subset of Hc.

Definition 2.13 Let C be a closure operator on U,
we denote by Zc the family of subsets X of U such
that:

1. X #£C(X),
2. for any proper subset Y of X, C(Y) # C(X).

Note that, by Item 1 of definition 2.13, ZcNFe =0
and that, by Item 2, each X in _#¢ is a minimal
element of {Y CU : C(Y) = C(X)}. Thus a subset
A C U is closed iff for any clause AU X — a €
He( Zc) we have a CA.

Theorem 2.14 Let C be a closure operator on U,
then

e Ho(_Zc) is a Horn representation of fco;

e Ho(_Zc) is the set of prime implicates of fc.

Example 2.15 With closure system F¢o of Exam-
ple 2.6:

/C’ = {{e}a {a7 d}> {aa 6}, {ba c}a {ba d}a {ba e}:
{e,d}, {c,e}, {a,b,c}}
Hco( fZc) = {{a,d} =, {a,e} =, {c,e} =, {b, e} —,
{a,b,c}—,{e}—d,{b,c}—d,
{b,d}— ¢, {c,d} — b}
fo=(—aV-d)A(—aV —e)A(-cV —e)
A(=bV —e) A (maV bV —c) A (—eV d)
A(=DV —eVd)A(=bV eV —d)
AV —eV —d)

We will now translate the domination relations into
logical form.

Definition 2.16 Let C be a closure operator on U,
X C p(U) - Fe, A cvuU, and (Z',y) - (U - A)2
We will define Ko( X, A, z,y) as the set of clauses:
He(X)U{=a:a€c A} U{> z,y—}.

Theorem 2.17 Let C be a closure operator on U,
A a closed set, and (z,y) € (U — A)2. Then
(z,y) € domc(A) iff the following set of clauses
is unsatisfiable:

KC(/Ca A: xvy)

In Theorem 2.17, the set of clauses Hc(_Zc) used
by K¢ can be replaced by any Horn representation
H of fo. Then for any closed set A, doma(A) can
be computed in O(|H|.|JU — A|?) time.

Definition 2.18 Let H be a set of clauses. We
will denote by ABS(H) the minimal equivalent set
of clauses obtained from H by removing clauses by
absorption (i.e. A— x absorbes AU B— z).

Example 2.19 Let F¢ be the closure system de-
fined in Example 2.6 then

ABS(Ho( Zc)U{—=d}) =
{{a,d}—,{a,e}—,{c,e} =, {b,e}—,{a,b,c} —,
{b,d}— ¢, {c,d} — b,— d}

It follows that:
o domc ({d}) = {(b,¢), (c,)), (a,b), (a, ), (a,€)}
e Domg({d}) = {({a},{b,c}), ({a},{e})}

o Cover of {d}: {{b,c,d},{d,e}}



3 Closure systems associated
with rule generation

One of the most crucial problems in Data Mining
using Formal Concept Analysis is rule extraction.
In Example 2.2, e will imply d, because there is no
concept where e appears without d. Finding these
rules, called exact association rules, is of major im-
portance in practise, and clearly there are a great
number of them.

Work by Guigues and Duquenne ([GD 86]) and by
Ganter ([Gan 84]) show that the set of such rules
can be represented by a basis of rules, from which all
other rules can be easily inferred, a process which
can drastically reduce the number of rules which
need to be computed and memorized. However,
existing algorithms for computing this basis are not
very efficient, and new algorithmic tools need to be
investigated.

In relation to the work in this paper, existing rule
generation algorithms are based on the definition
of two closure systems, corresponding to so-called
‘pseudo-closed sets’ and ’'quasi-closed sets’ associ-
ated with the initial closure system corresponding
to concepts.

In this section, we will investigate these two other
closure systems, and in particular we will accord-
ingly transpose Theorem 2.17.

3.1 Dependancy relations and basis

Any closure system is associated with a depen-
dency relation corresponding to the set of associ-
ation rules. Generators and basis can thus be used
in the context of closure systems.

Definition 3.1 A binary relation D on p(U) is
said to be a dependency relation if it verifies
the following properties for all Y1,Y2,Y3CU:

C1) D is transitive,

C2) if Y2 CY; then (Y1,Y2) € D,

C3) if (Y1,Y2) € D then (Y1 UY3,Y2 UY3) € D.
Note that conditions C1) and C3) imply that if

(Y1,Y2) € D and (Y3,Yy) € D then (Y1 UY;, Y2 U
Yy) € D.

Definition 3.2 If R is a relation on p(U), we will
denote by R™ the minimal relation on p(U) includ-
ing R which is o dependency relation.

Let D be a dependency relation on p(U). A sub-
relation RC D is said to be a generator of D iff
Rt =D.

If there exists some proper sub-relation S of R such
that ST = D then R is said to be redundant, oth-
erwize R is called o basis of D.

Definition 3.3 Let C be a closure operator U. We
define a binary relation—¢c on p(U)? by one of the
following equivalent conditions' for X,Y CU:

X—=cY
= (VZCU) (XCO(2) = YCC(Z) (1)
= C(Y)cC(X) (2)
= YCC(X) (3)

A pair of subsets X,Y such that X —¢ Y is called
an exact association rule. — ¢ will be called an
assoctation relation.

Property 3.4 For any closure operator C on U,
—¢ s a dependency relation on p(U).

From a formal point of view, X —¢ Y denotes a
pair of sets, while X — Y denotes a set of proposi-
tional clauses. However, we will see that one holds
iff the other holds.

We can now define generators and basis for an as-
sociation relation:

Definition 3.5 Let C' be a closure operator on U,
let X Cp(U) — Fc be a family of non-closed sets.
We will denote by Rc(X) the relation {(X,C (X)) :
X € X} Cp(U).

We will say that X is a generator of —¢ if
Ro(X)t =—¢. If in addition Ro(X) is minimal,
then X is called a basis of —¢.

As it has been pointed out in [GD 86], “¢ is a
generator of —¢.

Definition 3.6 Let C' be a closure operator on U.
Then a subset X € p(U) — F¢ is said to be quasi-
closed iff for anyY € Fo, XNY € FoU{X}. We
will denote by D¢ the family of quasi-closed sets.

Because of Definition 2.4, for any quasi-closed set
X, FocU{X} is a closure system. This leads to the
following theorem, proved in [GD 86, BD 98|.

L As usual, we denote (X,Y) €—¢ by the infix notation
X—)C Y.



Theorem 3.7 Let C be a closure operator on U,
then:

1. Q¢ is a generator of —¢.

2. FocUZ¢ is a closure system.

[GD 86] showed that all the basis of —¢ have the
same cardinal; moreover, they defined a unique
canonical basis by using the closure system which
we will now describe.

Definition 3.8 Let C be a closure operator on U,
the family B¢ of pseudo-closed sets of C is defined

by:
B e Bo iff
CB)#B and VA€ Bc)ACB=C(A)CB

Theorem 3.9 (/GD 86])
Let C be a closure operator on a finite set U, then:

1. Bc is a basis of —¢.
2. BoC2c.

3. FoUPBc is a closure system.

In the rest of this work, we will call family ¢ the
canonical basis of -¢; we will denote by ¢ the
closure operator associated with the closure system
FoUZ¢, and by B¢ the closure operator associated
with Fo U %Be.

As we have generalized domination to any closure
system, there will be a domination for closure sys-
tem Fp, = $c U Fe and a domination for closure
system Fg, = Zc U Feo. Characterization 2.9 can
thus be applied to generating the closed sets of B,
and Q..

3.2 Canonical basis and Horn mini-
mal representation

We will now give a logical representation of the
canonical basis, and correspondingly express the
domination relations associated with Fp_ and Fq,.

Lemma 3.10 Let C be a closure operator; X is a
generator of >¢ iff Ho(X) is equivalent to He .

It follows that we have X —¢ Y iff all the clauses
in X = Y are consequences of clauses in Ho(_%¢).

Lemma 3.11 Let C be a closure operator on U,
and X Cp(U) — Fc, then Ro(X) is non redundant
iff Ho(X) is irredundant.

A minimal Horn representation of f¢ is a set
‘H of Horn clauses representing fc such that |H]| is
minimal.

Theorem 3.12 Let GC p(U)—F¢, G is the canon-
ical basis of C iff H(G) is a minimal Horn repre-
sentation of fc.

Consequently, we can apply iterative decomposition
algorithms in [BCK 98] to #¢ to approximate a
basis. These algorithms will keep all the elements
of Ho( #c) N Ho(%#c) and for every clause ¢ in
H(%c) they will keep at least one clause d such
that ¢ is a logical consequence of d.

However, the following property is a consequence of
Theorem 3.12 and of Theorem 1 from [BC 94].

Property 3.13 Let C be a closure operator on a
finite set U. Given the generator Zc, the problem
of finding a basis of C' is NP-complete.

We will now translate dominations for closure B,
into logical form, as we did in Theorem 2.17 for
closure C.

Let C be a closure operator on U, A a closed set,
(z,y) € (U — A)? and [Bc]a,. the following subset
of %C:

[#clae ={X € Bo = |X] < |B(AU{z})]}

By Definition 3.8, (z,y) € domg, (A) iff the follow-
ing set of clauses is unsatisfiable:

KC([‘%C]A,$ ) AJ may)

Another approach to finding the canonical basis,
is to generate the quasi-closed sets following the
method in [GD 86]. Moreover, in the context of
propositional Horn clauses, the relationship be-
tween the representation of fo based on quasi-sets,
and the one based on pseudo-sets is quite simple
since we have:

He(%Bc) = ABS(He(2¢))

Domination for ). can be computed for any A €
Fc using Zc as we will do in Theorem 3.15,



which is a consequence of the following lemma from
[GD 86].

Lemma 3.14 (/GD 86]) X € Q¢ iff for anyY C
X,CY)#CX)=C(Y)CX

Theorem 3.15 Let C be a closure operator on U,
A a closed set, and (x,y) € (U — A)2. Then
(z,y) € domg.(A) iff the following set of clauses
is unsatisfiable:

KC(/C(A U {SL’}), A: :c,y)

where Zc(AU {x}) denotes the subset of Zc de-
fined by: Foc(AU{z}) = {J € fc : CJ) #
C(Au{z})}.

Example 3.16 Consider again the closure system
defined in Example 2.6, then:

Sc(a,d,e}) = {{e},{b,c},{b,d}, {c,d}}
= /C({ba dae}) = /C({Ca dae})'

It follows that for x € {a,b,c}:

ABS(Hc( Zc({z,d,e}) U{> d,— e})
= {bd— ¢,ed— b,— d,— e})

and domg, ({d,e}) ={(b, c), (b,d)}.

Therefore, the elements of Fg, that cover {d,e}
are {a,d,e} and {b,c,d,e}. Among them, only the
last one is in Bc.

4 Algorithmic aspects

As discussed above, the set of concepts covering
a given concept A can be computed without any
other input than relation R and concept A. This,
however, fails to be the case when computing a ba-
sis of exact association rules, as the set of already
computed rules is scanned to decide whether a can-
didate part of U belongs to the basis.

We have seen that the notion of domination not
only generalizes well, but that the purely local dom-
ination relation used in generating the concepts is
in fact closely related to the domination relation
used in generating the canonical basis.

We present a new algorithmic process, which uses
domination to generate rules, requiring only infor-
mation inherited by each concept from its direct
concept predecessors. The general idea is that,

when going up from the bottom to the top of the
lattice, whenever a new domination appears, it cor-
responds to a rule.

Let us again use the binary relation from Exam-
ple 2.2. In order to simplify notations, we will de-
note rules of the canonical basis by A —¢ B, where
C(A) = AU B instead of A—¢ C(A). Associated
canonical basis Ro(%Be): {ad —¢ bee, be —¢ d,
bd—¢ ¢, cd—¢c b, e—¢ d, bede —¢ a}.

The corresponding lattice %, of Fo U % is shown
in Figure 2.

Figure 2: Lattice % associated with relation R of
Example 2.2.

The concepts are represented by rectangles and la-
belled by their intents; the pseudo-concepts are rep-
resented by circles.

We will now briefly describe our algorithmic pro-
cess, which, by a breadth-first type traversal start-
ing with the bottom element, recursively both gen-
erates the concept cover of a given concept A, and
generates the pseudo-concepts which cover A. Our
algorithm correctly generates all concepts, as well
as the premisses of a generator of rules, which con-
tains all pseudo-concepts; moreover, no element of
the type A U {z}, where A is a concept and =z
is an element of U, is generated which is not a
pseudo-concept; furthermore, few rules which are
not pseudo-concepts are generated.

We will illustrate our process on the sample lattice
above, where only pseudo-concepts are generated.

We will denote by R(A) sub-relation R(P —



A,N(A)), and domination in R(A) by >:
z >y iff (z,y) € domc(A)

where C' in general could be any closure operator,
and in our example is N2. At each step of the
algorithm, processing concept A, we compute:

e The domination relation D of R(A), the par-
tition P; of R(A) into maxmods, the non-
dominating maxmods of R(A), and deduce the
concept cover of A.

e Some dominations, which correspond to rules
generated by some ancestor of A, are inher-
ited, and they define a different partition P,
into maxmods, with more classes. Domination
relation D is translated using the maxmods of
P, and each resulting domination is then ex-
amined.

Each domination thus obtained can be written,
in a general fashion, as X > Y1Y5...Y}, where
X, Y1, .....Y, are maxmods of Ps.

The rule analysis step puts domination X >
Y1Y5...Y), into one of the three following cate-
gories:

1. Not new: all X >Y;, with ¢ € [1,k], are
inherited. In this case, no rule is gener-
ated.

2. New and pure: no X > Y; is inherited.
In this case, rule A + X —¢ Y1Y¥5...Y is
generated, and X > Y1Y5...Y} is added to
the information which A will pass on to
the elements which cover it.

3. New but not pure: some X > Y; are in-
herited, but not all; in this case, no rule
is generated by A, but it is possible to
predict whether or not a corresponding
rule will be generated in some descendant
of A. This is an important feature, be-
cause it helps to correctly decide whether
to generate a rule which is not of the sim-
ple type AU {z} described above, but be-
cause of space restrictions we will not go
into corresponding details here.

Example 4.1 FEzecution on the relation in 2.2:

e Step 1, processing the bottom element:
Partition into mazmods: {a}|{b}|{c}{d}|{e}-
Local domination in R: e > d.
Non-dominating mazmods: {a}, {b},{c},{d}.

Concept cover of bottom: {a,b,c,d}.

Inherited domination: .

Rule analysis:

e > d is new and pure: rule e ¢ d is gener-
ated.

Domination information {e > d} is passed on
to elements of concept-cover.

Step 2, processing concept a: Partition
into mazmods: {b}|{c}|{de}. Local domination
in R(a): d > bee,e > bed. Non-dominating
mazmods: {b},{c}.

Concept cover of a: {ab,ac}.

Inherited domination: {e > d}.

Rule analysis:

d > bece is new and pure: rule ad —¢ bee is
generated.

e > bed is new but not pure, as {e > d} is in-
herited.

Let us examine whether we can exrpect a new
domination for e higher up: C(ad) = U, which
will not correspond to a rule.

Domination information {d = e,de > bc} is
passed on to elements of concept-cover.

Step 3, processing concept b: Partition
into maxmods: {a}|{c,d}|{e}. Local domina-
tion in R(b): ¢ > d,d > ¢,e > acd. Non-
dominating mazmods: {a},{c,d}.

Concept cover of b: {ab,bed}.

Inherited domination: {e > d}.

Rule analysis:

¢ > d is new and pure: rule bc—¢ d is gener-
ated.

d > c is new and pure: rule bd—¢ c is gener-
ated.

e > acd is new but not pure, as {e > d} is in-
herited.

Let us examine whether we can expect a new
domination for e higher up: C(bd) = bed, so we
can expect rule bede ¢ a, and e > a can be
used in any descendant to generate rules with
premisses of cardinality > 4.

Domination information {¢ = d,e > d} is
passed on to elements of concept-cover.

Step 4, processing concept c: Partition
into maxmods: {a}|{b,d}|{e}. Local domina-
tion in R(c): b > d,d > b,e > abd. Non-
dominating mazmods: {a},{b,d}.

Concept cover of ¢: {ac,bed}.

Inherited domination: {e > d}.

Rule analysis:

b > d is new and pure: rule bc—¢ d is gener-
ated.



d > b is new and pure: rule cd—¢ b is gener-
ated.

e > abd is new but not pure, as {e > d} is in-
herited.

Let us examine whether we can exrpect a new
domination for e higher up: C(cd) = bed, so as
in Step 3, we can expect rule bede —¢ a, and
e > a can be used in any descendant to gener-
ate rules with premisses of cardinality > 4.
Domination information {b = d,e > d} is
passed on to elements of concept-cover.

Step 5, processing concept d: Partition
into mazmods: {a}|{b,c}|{e}. Local domina-
tion in R(d): a > bee,b > ¢,¢c > b. Non-
dominating mazmods: {e},{b,c}.

Concept cover of d: {de,bed}.

Inherited domination: 0, as {e > d} has no
meaning in R(d).

Rule analysis:

a > bce is new and pure: rule ad —¢ bece is
generated.

b > c is new and pure: rule bd—¢ c is gener-
ated.

¢ > b is new and pure: rule cd—¢ b is gener-
ated.

Domination information {a > bee,b = ¢} is
passed on to elements of concept-cover.

Step 6, processing concept ab: Partition
into mazmods: {c,d,e}. Local domination in
R(ab): ¢ > de,d > ce,e > cd.

Non-dominating mazmod: {c,d,e}.

Concept cover of ab: abcde, which is the top
element.

Inherited domination, respectively from a and
b: {d = e,de > bc} U {c = d,e > d}, i.e.
c=d =e, so no rule is generated.

Step 7, processing concept ac: Partition
into mazxmods: {b,d,e}. Local domination in
R(ac): b > de,d > be,e > bd.

Non-dominating mazmod: {b,d,e}.

Concept cover of ac: abcde, which is the top
element.

Inherited domination, respectively from a and
c: {d =ede > b} U{b =de > d}, ie.
b=d =e, so no rule is generated.

Step 8, processing concept de: Partition
into maxmods: {a,b,c}. Local domination in
R(de): a > be,b > ac,c > ab.

Non-dominating mazmod: {a,b,c}.

Concept cover of de: abcde, which is the top
element.

Inherited domination, from d: {a > bce,b =

c}.

a > bc is not new, as a > bee is inherited.

bc > a is new and pure: rule bede —¢ a is
generated.

e Step 9, processing concept bed: Partition
into mazmods: {a,e}. Local domination in
R(bed): a > e e > a.

Non-dominating mazmod: {a,e}.

Concept cover of bed: abede, which is the top
element.

Inherited domination, from b, ¢ and d respec-
tively: {c =d,e > d}U{b=d,e >d}U{a >
bece,b = c}, i.e. a > e, since byc and d have
disappeared from R(bcd).

Rule analysis:

a > e is not new, as it is inherited.

e > a is new and pure: rule bede —¢ a is
generated.

We see that each pseudo-concept has been generated
ezxactly as many times as the number of predecessors
it has in %5, and no other rule has been generated.

5 Conclusion and open ques-
tions

In this paper, we use the relationship between con-
cept lattices and domination in graphs to extend
already existing graph-oriented the results on con-
cept lattices to a general closure system and to Horn
clauses.

Though obviously there remains much work to be
done in this direction, our results are interesting not
only from a possible algorithmic point of view, but
also because they can lead to a better understand-
ing of the canonical basis of rules; moreover, it is
important to find new ways of modelizing these re-
sults so that a variety of non-specialists can achieve
a better grasp on these problems.

As far as open questions are concerned, we still have
to improve the prospective algorithm presented in
Section 4, both so that it will never yield anything
but rules of the basis, but also in terms of data
storage and efficiency.

Another question of great current interest is that
of generating approximate association rules. As an
example, an interesting recent approach by J-M.
Bernard, S. Poitrenaud [BP 99] works by first ap-



proximating the binary relation according to coher-
ent probabilistic models which must be compatible
with logical rules; the logical interpretation we in-
troduce in this paper could be combined with this
approach in future work.
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