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Abstract. We use our definition of an underlying co-bipartite graph
which encodes a given binary relation to propose a new approach to
defining a sub-relation or incrementally maintaining a relation which
will define only a polynomial number of concepts.

1 Introduction

Concept lattices, also known as Galois lattices, have been studied
for a long time, for example in the context of Social Sciences (see
[1]), but recently, Wille and Ganter’s work have introduced new per-
spectives and applications, and the use of concept lattices is rapidly
emerging in many areas related to Artificial Intelligence and Data
Mining, such as Data Base Management, Machine Learning, and
Frequent Set Generation (see e.g. [24], [23], [22], [18], [14]).

The main drawback of concept lattices is that they may be of ex-
ponential size. This makes it impossible, in practise, to compute and
span the entire structure they describe. It is thus of primeval impor-
tance to be able to navigate the lattice efficiently, or to be able to
define a polynomial sized sub-lattice which contains the right infor-
mation.

Though it is experimentally known that the greater the number of
”ones” of the binary relation is, the more concepts the corresponding
lattice will tend to have, there is no formal known characterization of
the family of binary relations which will define a polynomial number
of concepts. Thus in order to make a lattice smaller and more feasi-
ble, we can always remove ”ones” from the relation, but this will not,
in general, yield a sub-lattice, and there are even cases in which this
may increase the number of concepts which the relation defines.

In this paper, we propose a formal approach which will help define
binary relations with a polynomial number of concepts.

Our tool, surprisingly enough, is an emerging area of the theory of
undirected graphs: the theory of minimal separation. A separator is a
group of vertices, the removal of which disconnects the graph, just as
the removal of an internal node in a tree will disconnect the tree into
several sub-trees. Minimal separation, introduced by Dirac in 1961
to characterize chordal graphs, a family of graphs which is a direct
generalization of trees, has recently given rise to a consistent body of
research, with many new results for a variety of graph classes, and
even in the general case for arbitrary graphs.

In a recent contribution in the Data Mining area (see [7]), we in-
troduce a new encoding for a given binary relation, by using a graph
constructed on the complement of the relation. We show that there
is a one to one correspondence between the concepts defined by the
relation and the minimal separators defined by this underlying graph.
�
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This fundamental remark enables us to apply the powerful recent
tools defined on minimal separation to concept lattices: given any re-
lation, we are able to compute a poly-sized sub-relation resulting in
a sub-lattice of the original lattice. This is done by repeatedly choos-
ing a minimal separator of the underlying graph and forcing it into a
clique, a process which computes a partial embedding of the graph
into a chordal graph. We are also able to decompose the lattice, and
propose a new way of generating the cover of an element, as well as
several algorithmic processes to generate the set of concepts, based
on minimal separator enumeration algorithms.

In this paper, we focus on the possibility of reducing a lattice to
a poly-sized sub-lattice or maintaining a relation which we are sure
to define a poly-sized concept lattice, by using a different and larger
class of graphs: the class of weakly chordal graphs, a large superclass
of chordal graphs.

Our contribution is intended as a position paper, presenting a
prospective research direction, interesting both for the field of For-
mal Concept Analysis, and for the field of Graph Theory; indeed,
any theoretical or experimental breakthrough in one of these two ar-
eas would lead to results in the other.

2 Preliminaries

In order to make this paper self-contained, we will need to give
some preliminaries, especially since we need graph theoretic con-
cepts which are not generally used in KDD problematics.

2.1 Lattices

Given a finite set � of ”properties” or ”attributes” and a finite set �
of ”objects” or ”tuples”, we will consider a binary relation � as a
proper subset of the Cartesian product ����� ; we will refer to the
triple �	��
��

���� as a context, and denote ������� the corresponding
concept lattice.

Example 2.1 Let �	��
���
���� be a context, with ��������
���
� !
�"#
�$%
�&(' ,
�)�*�,+-
/.,
�01
�21
�34
�5%' , and � :

a b c d e f
1 x x x x
2 x x x
3 x x x
4 x x x
5 x x
6 x

The associated concept lattice ������� is shown in Figure 1.



bcde x 1def x 4abc x 2abf x 3

ab x 23 bc x 12 cd x 15 de x 14

a x 236 d x 145c x 125b x 123

   x 123456φ

f x 34

abcdef x φ

Figure 1. Concept lattice ������� of relation � from Example 2.1.

2.2 Graphs

The graphs used in this paper are finite and undirected. A graph is
denoted �*� �	� 
�
)� ; � is the vertex set, � �
����� , and 
��*�	����� �
is the edge set, � 

����� .

For ����� , � ��� � denotes the subgraph induced by � in � (only
the edges which have both endpoints in � are retained).

The neighborhood of vertex � (the set of vertices � such that ���
is an edge of 
 ) is denoted by � ���(� . If ��� is an edge of 
 , we say
that � and � see each other. For ��� � , � �	��� ��!#"%$'& �(� ���(���*)+� .
A vertex is said to be universal if it sees all the other vertices of the
graph.

A clique is a set � of vertices such that ,-� 
.�0/1� 
��32�4��
5���6/

 .

A graph is said to be chordal or triangulated if it contains no
chordless induced cycle of length strictly greater than three. Mini-
mal triangulation, also called minimal chordal completion, is the
process of embedding a graph into a chordal graph by the addition of
an inclusion-minimal set of edges.

The basic notion we use in this work is that of minimal separator.
A separator 7 of a connected graph � is a subset of vertices such

that subgraph � �	�0)+7 � is disconnected. 7 is called an xy-separator
if � and � lie in different connected components of � �	��)�7 � ; 7
is called a minimal xy-separator if 7 is an ��� -separator and no
proper subset of 7 separates � from � . Finally, 7 is called a minimal
separator if there is some pair �8� 
�� ' of vertices such that 7 is a
minimal ��� -separator.

A minimal separator 7 of a graph � is characterized by the fact
that there are at least two distinct connected components 9 and : of
� �	�;)<7 � such that � �(9�� �����(: � ��7 ; 9 and : are called full
components. 7 is then a minimal �4� -separator for any pair ���(
 � ' of
vertices where �
/=9 and �>/0: .
7 is called a clique separator if it is a separator and a clique;

we will say that we saturate a non-clique separator S if we add all
missing edges necessary to make 7 into a clique.

With a context �	��
��

���� , we associate an underlying co-bipartite
graph �@? � �	� 
A
�� with vertex set � � �B!)� , where � and � are
cliques, and there is an ��� edge in 
 , �0/ ��
5�C/ � iff ��� 
�� � is not
in � .

We show that if 7 is a minimal separator of �@? , then � �	�4)D7 �
has exactly two connected components, 9 and : , with 9 �<: a
concept of ������� , and vice-versa.

Example 2.2 The underlying graph �@? of relation � from Example
2.1 is shown in Figure 2. 7�� ���(
 "#
�$%
�& 
�01
�21
/34
�5%' is a minimal
separator of � ? , as illustrated by Figure 3. 7 separates 9 � ����
� �'
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Figure 2. Underlying graph E ? of relation � from Example 2.1.

from : � �,+-
�.%' , and �  � + . is a concept of � and an element of
� ����� .

Note that � �	� � � � ��
� !
�"#
�$%
�& 
�21
/34
�5%',
F� �	 � �
����
���
�"#
�$,
�&#
�01
�2 
�5,' , so ���(9�� � �(� �	���6!G� �	 ����H)�9 �
����
�"#
�$%
�& 
�01
 2 
/34
�5%'��I7 , which shows that 7 is indeed a minimal
separator of � ? .
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Figure 3. Separator J
K3LNMPO5Q'OSRTO5UPOSV%OSW'OSX%O5YTZ of E ? .

This enables us to use existing algorithms for generating the mini-
mal separators of a graph (see [21], [20],[15], [5]) to efficiently gen-
erate the concepts, matching the best complexities of [16] and [9].

Moreover, if we add in � ? the edges necessary to make 7 into
a clique, defining a new relation �\[ , which is obtained from � by
deleting the corresponding crosses, then concept lattice ����� [ � is the
sub-lattice obtained from ������� by removing all the elements which
are not comparable to 9 �]: .

We thus propose a generic process which will automatically pro-
duce a sub-lattice:

Given a binary relation � , compute the corresponding underlying
graph � ? ; find a minimal separator 7 of � ? ; saturate 7 by adding
any missing edges; remove from � the corresponding crosses.

The new lattice obtained is strictly smaller than the previous one;
the process can be repeated, and it will end in a polynomial number
of steps when a maximal chain of the lattice is obtained. The corre-
sponding underlying graph will be a chordal graph, a class known to
have very few minimal separators (less than the number of vertices).

Example 2.3 Let us saturate separator 7 � ���(
 "#
�$%
�& 
�01
�21
�34
�5%' of
�^? from Example 2.2, representing concept �  ���+ . . Edges �10 , �15 ,
",2 , "13 , $�2 , &#0 and & 2 will be added to �@? and the corresponding
crosses removed from the relation, defining a new relation � [ :



a b c d e f
1 x x x x
2 x x x
3 x
4
5 x
6

Figure 4 gives the very restricted sublattice ����� [ � obtained. Satu-
rating 7 has caused concepts ���
.!0-5 , �4� �
.!0 , �4� &
� 0 , " � + 2,3 ,
 " � + 3 , & � 0!2 , "4$!& � 2 and "4$�� + 2 to disappear from the
lattice.

bcde x 1abc x 2

bc x 12

c x 125b x 123

   x 123456φ

abcdef x φ

Figure 4. Concept lattice ����� [ � .

There exist a variety of ways of finding a minimal separator in a
graph in linear time; one can, for example, easily compute the min-
imal separators included in the neighborhood of a vertex � which is
not universal, by computing the connected components of the graph
� �	� ) �(� ���(� ! �8� '!��� ; for each connected component � thus de-
fined, � �	��� is a minimal separator of � .

Moreover, when the graph � is co-bipartite, a clique minimal sep-
arator can be used to decompose the graph into two proper subgraphs
� � and � � such that any minimal separator of � is a minimal sepa-
rator of either � � or � � . Thus, after a first minimal separator is sat-
urated, the next minimal separator can be searched for on a strictly
smaller graph (with fewer vertices and fewer edges).

3 Computing a sub-relation by weakly chordal
graph embedding

The process described in the previous section ensures that, given any
binary relation, we can obtain a sub-relation defining a poly-sized
sub-lattice, a theoretical breakthrough.

When applied experimentally, however, this process turns out to
be too brutal, as every step will define a new articulation point in the
lattice, and causes too many concepts to disappear. We are thus led
to propose a more subtle way of modifying the lattice, which yields
a poly-sized lattice which is larger and retains more information.

Repeatedly saturating a minimal separator in an arbitrary graph
will yield a minimal triangulation of the input graph, which is an
embedding into a chordal graph by addition of an inclusion-minimal
set of edges (see [17], [2]).

One of the interesting properties of chordal graphs which we use
is that the resulting graph has a polynomial number of minimal sep-
arators, in fact very few (less than the number of vertices).

It seems logical, in order to be less reductive, to try embedding
the graph into another larger class of graphs. Recent research has
shown that there are other graph classes with only a polynomial
number of minimal separators; the most promising one is the class
of weakly chordal graphs (also called weakly triangulated graphs),
which was introduced by Hayward in 1985 (see [11]) as a gener-
alization of chordal graphs, and which define a large super-class of
chordal graphs.

Definition 3.1 A graph � is said to be weakly chordal or weakly tri-
angulated if neither � nor the complement of � contains an induced
chordless cycle of length strictly greater than 4.

This generalizes chordal graphs which are defined as graphs with
no induced chordless cycle of length strictly greater than 3; the re-
quirement added for the complement ensures that the class remains a
perfect graph class, which is important because many hard problems
become polynomial on such classes.

The class of weakly chordal graphs has been well-studied, and has
given rise to many results, with an interesting incremental composi-
tion scheme (see [12]), several efficient recognition algorithms (see
[13], [6]) and many properties which are similar to those of chordal
graphs (see [6], [4])).

Moreover, graphs of this class are shown in [6] to have no more
than

� ��� � minimal separators, that is not more than it has edges.
It is thus interesting to experiment embedding our underlying

graph into a weakly chordal graph. In order to do this, we use the
following algorithm:

We first embed the graph into a chordal graph, then remove the
added edges one by one until the graph becomes critical, by which
we mean that any other edge removal will yield a graph which fails
to be weakly triangulated.

This process has been shown in [19] to yield a minimal triangu-
lation using chordal graphs instead of weakly chordal ones as crit-
ical graphs. The classes of chordal and weakly chordal graphs ex-
hibit such stricking similarities that we conjecture that there is a
strong theoretical correlation between the minimal separators of such
a weak chordal completion and the minimal separators of the input
graph, as is the case with classical chordal completion.

Consequently, we have tested on binary relations the embedding
into a weakly chordal graph, and obtained encouraging results, as
we not only obtain a polynomial lattice showing structural similari-
ties with the lattice defined by the original relation, but we also often
actually obtain a sub-lattice, which is without articulation point and
thus retains more information than when saturating a minimal sepa-
rator.

Example 3.2 Initial relation � from Example 2.1 defines an under-
lying graph � ? which is not weakly chordal. Adding edge & 2 will
embed the graph into a weakly chordal graph. A new relation �>[ [ ,
without cross & 2 , is obtained:

a b c d e f
1 x x x x
2 x x x
3 x x x
4 x x
5 x x
6 x

The corresponding lattice ����� [ [ � is shown in Figure 5. Note how it
is richer and more interesting than ����� [ � obtained by saturating a
minimal separator and illustrated in Figure 4.



bcde x 1abc x 2abf x 3

ab x 23 bc x 12 cd x 15 de x 14

a x 236 d x 145c x 125b x 123

   x 123456φ

abcdef x φ

Figure 5. Concept lattice ����� [ [ � of relation � [ [ from Example 3.2.

Another interesting aspect of weakly chordal graphs is that they
are endowed with characterizing edge-addition construction schemes
(see [12]), which makes it easy to maintain a modified binary relation
with a weakly chordal underlying graph.

4 Conclusion

In this paper, we have characterized a new family of binary relations
which define concept lattices of polynomial size, namely those asso-
ciated with co-bipartite weakly chordal graphs. We feel that this is
important, as little is known on the size of the lattice defined by a
relation.

We have shown this to be useful to extract a poly-sized lattice from
an exponential lattice by working on a sub-relation, but this can also
help maintain relations with a small associated concept lattice in ap-
plications such as organizing object hierarchies or choosing samples
for machine learning, since recognition of weakly chordal graphs is
polynomial. The question remains open as to whether a binary rela-
tion with an underlying weakly chordal co-bipartite graph can consti-
tute a correct sampling for a large arbitrary relation; and if this is not
the case, it would be interesting to find out why, as this would mean
that there is a semantic aspect behind the structure of the underlying
graph.

As mentioned in our introduction, relations which define an expo-
nential number of concepts tend to be dense (to have many ”ones”);
the corresponding underlying graph would then have

� ��� � edges
(instead of

� ��� � � ), so a corresponding weakly chordal underlying
subgraph would retain only

� ��� � concepts. This may turn out to be
insufficient, so it would be interesting to investigate a further gen-
eralization of weakly chordal graphs into a superclass which has a
greater yet tractable number of minimal separators.

Our approach offers a generic tool for analyzing the structure of
relations, as well as for estimating the size of the concept lattice de-
fined by a given relation, as hundreds of graph classes are known and
have been extensively studied, and this body of knowledge can now
be put to use in the field of concept lattices.
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